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ABSTRACT

The Arctic is warming at approximately twice the global rate, with well-
documented indirect effects on wildlife. However, few studies have
examined the direct effects of warming temperatures on Arctic
wildlife, leaving the importance of heat stress unclear. Here, we
assessed the direct effects of increasing air temperatures on the
physiology of thick-billed murres (Uria lomvia), an Arctic seabird with
reported mortalities due to heat stress while nesting on sun-exposed
cliffs. We used flow-through respirometry to measure the response of
body temperature, resting metabolic rate, evaporative water loss and
evaporative cooling efficiency (the ratio of evaporative heat loss to
metabolic heat production) in murres while experimentally increasing
air temperature. Murres had limited heat tolerance, exhibiting: (1) a
low maximum body temperature (43.3°C); (2) a moderate increase
in resting metabolic rate relative that within their thermoneutral
zone (1.57 times); (3) a small increase in evaporative water loss
rate relative that within their thermoneutral zone (1.26 times); and
(4) a low maximum evaporative cooling efficiency (0.33). Moreover,
evaporative cooling efficiency decreased with increasing air
temperature, suggesting murres were producing heat at a faster
rate than they were dissipating it. Larger murres also had a higher rate
of increase in resting metabolic rate and a lower rate of increase in
evaporative water loss than smaller murres; therefore, evaporative
cooling efficiency declined with increasing body mass. As a cold-
adapted bird, murres’ limited heat tolerance likely explains their
mortality on warm days. Direct effects of overheating on Arctic wildlife
may be an important but under-reported impact of climate change.
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INTRODUCTION

Climate change is warming the Arctic at approximately twice
the global rate (Anisimov et al., 2007; McBean et al., 2005). In the
Canadian Arctic, mean annual air temperature has increased by
~2.3°C from 1948 to 2016, and could increase by an additional 7.8°
C by 2100 under high-emission scenarios (Zhang et al., 2019). This
warming may have severe effects on cold-adapted homeothermic
endotherms (i.e. organisms that actively maintain relatively constant
body temperatures through metabolic heat production). Several
studies have highlighted the indirect effects of warming on Arctic
wildlife, such as compositional shifts in the prey base (Gaston and
Hipfner, 1998; Gaston et al., 2005; Yurkowski et al., 2018), earlier
breeding phenology and shifts in the timing of migration (Chmura
et al.,, 2020; Clairbaux et al., 2019; Le Corre et al., 2017). In
contrast, the direct effects of warming on the physiology and
behaviour of Arctic endotherms has been observed but less studied
(Gaston et al., 2002).

There is growing evidence that the heat tolerance limits
of endotherms have ecological consequences (Rezende and
Bacigalupe, 2015). In birds, which maintain their core body
temperature at levels higher than in mammals (41°C versus 37°C),
heat waves have caused mass mortality events (McKechnie et al.,
2012) and reproductive failures (Bolger et al., 2005; Boersma and
Rebstock, 2014). The forecasted increase in heat wave frequency
is predicted to cause declines in select avian populations (Conradie
et al., 2019; McKechnie and Wolf, 2010). However, as most avian
heat tolerance studies have focused on desert birds (Gerson et al.,
2014; Smit and Mckechnie, 2015; Whitfield et al., 2015), less is
known about heat tolerance in Arctic birds. Recent evidence
suggests that an Arctic passerine may be limited in its capacity to
withstand even moderately high air temperatures (O’Connor et al.,
2021). As larger birds have proportionally less surface area to
volume ratios, and therefore less surface to dissipate heat, they may
be even more sensitive to heat stress.

Diving Arctic seabirds are exposed to a range of environmental
temperatures, resulting in an additional thermoregulatory challenge;
they must avoid heat stress during nesting, yet must minimize heat
loss while diving under icy waters for their prey. One such species is
the thick-billed murre (Uria lomvia; hereafter ‘murres’). Murres
have a circumpolar distribution (Frederiksen et al., 2016) and forage
in waters typically colder than 8.0°C (Gaston et al., 2005).

Murres face several indirect impacts of climate change (Gaston
et al., 2003, 2005, 2009), but mounting evidence suggests they will
also be directly affected by warming during the breeding season
(Gaston and Elliott, 2013; Gaston et al., 2002). Murres have been
observed displaying heat dissipation behaviours (heavy panting and
wing spreading), and have died on their nests as a result of heat
stress and mosquito parasitism during calm days with maximum air
temperatures as low as 22°C (Gaston and Elliott, 2013; Gaston et al.,
2002). Murres’ black back feathers have also been reported to reach
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temperatures as high as 46°C in full sun at ambient temperatures no
greater than 23°C (Gaston et al., 2002). Despite evidence that
murres are sensitive to heat, there has been no research that has
linked increasing air temperatures to heat stress, which is important
for predicting the effects of forecasted Arctic warming.

To examine physiological responses to heat stress in murres, we
exposed birds to increasing air temperatures (7,) and measured
responses in: (1) body temperature (73,); (2) resting metabolic rate
(RMR); (3) evaporative water loss (EWL); and (4) evaporative
cooling efficiency (the ratio of evaporative heat loss to metabolic heat
production: EHL/MHP; Lasiewski et al., 1966). To ascertain the
onset of heat stress, for each measurement we identified inflection
points, which represent a sudden change in the trait due to increasing
T,. We predicted that as a large (~1 kg) seabird with high metabolic
rates relative to its size (Gabrielsen et al., 1988) that is adapted for
foraging in cold waters, murres would exhibit inflection points at low
T, and tolerate low maximum 7, relative to smaller and more heat
tolerant species. Therefore, we predicted murres would also have
higher costs of thermoregulation and display large increases in RMR
relative to birds of the same body size from lower latitudes.

MATERIALS AND METHODS

Study site, temperature and gas exchange measurements
All bird handling was approved by the animal care committee at
McGill University and conducted under scientific permits from
Environment and Climate Change Canada (Banding Permit 10892,
Scientific Permit NUN-SCI-16-03) and the Government of Nunavut
(2019-021). We studied thick-billed murres, Uria lomvia (Linnaeus
1758), between 26 June and 7 August 2019, from the “West colony’
on Coats Island in northern Hudson Bay, NU, Canada (62°57°N,
82°00°W). The West colony has approximately 30,000 breeding
pairs of murres nesting on cliffs. Birds lay eggs around mid-June,
and chicks fledge by early to mid-August (Gaston et al., 1994,
2012). We captured incubating adult murres (#=10) using noose
polls. We were restricted in the number of murres we could capture
by logistical constraints associated with the challenges of working
in a remote Arctic location (no electricity, limited supplies, poor
weather, etc.) and were unable to return in 2020 because of travel
restrictions into Nunavut in response to COVID-19. We measured
body mass (M,) using a CS Series Ohaus portable scale (2000£1 g),
by placing individual birds head-first into a tared cylinder (which
secured their wings and held them still) on the scale and waited until
the mass stabilized.

To determine RMR and rates of EWL of individual murres, we
measured oxygen consumption rate (Vo,; ml min~') and water
vapour pressure (WVP; kPa), using flow-throw respirometry.
Immediately following capture, individual murres were placed in
a sealed Plexiglas metabolic chamber (42x42x41 c¢m) at the Coats
Island field station. The chamber was fitted with a mesh base; guano
fell through and into approximately 1 cm of mineral oil covering the
base of the chamber, which prevented evaporation from guano
affecting WVP measurements. We placed the chamber inside a
temperature-controlled and insulated box fitted with a Peltier
heating unit (model T35 DC-S, Mobicool International, Zhuhai,
China) and a Watercarbon Tech Era carbon fibre seat heater (Henan,
China). We monitored and regulated 7, inside the box using a digital
thermostat (ITC-1000F, Shenzhen Inkbird Technology Co.,
Shenzhen, China). We measured 7, inside the metabolic chamber
using a thermistor probe (Sable Systems, Las Vegas, NV, USA)
inserted through a small hole in the chamber and sealed with putty
(Gorilla all-purpose epoxy) and connected to a Field Metabolic
System (Sable Systems). 7, was measured using a thermocouple

probe (TC-1000 Type-T Thermometer) inserted approximately
3cm in the cloaca and secured with electrical tape. The
thermocouple was connected to a Sable Systems thermocouple
meter (model TC-1000) that measured T3, every second. Although
the thermocouple probe fell out prematurely at 7,=22.3°C in one
murre, we were able to obtain complete 7, measurements on 9 birds.

We pushed atmospheric air into the metabolic chamber using an air
pump (model ECOair 7, EcoPlus Commercial Air Pump). Air was
scrubbed of water vapour and CO, by passing the air stream through
columns of Drierite (W.A. Hammond, Drierite Co. Ltd, Xenia,
OH, USA) and soda lime connected in series. Once scrubbed, the
airstream was split into a baseline channel that went directly to the
analysers and a second channel that went to the chamber. Baseline
flow rates were controlled using a needle valve (AS4200F, SMC,
Tokyo, Japan), whereas chamber flow rates were controlled with an
OMEGA mass flow controller (calibrated 18 January 2019; model
FMI-100-MKC-2C, Norwalk, CT, USA). We maintained flow rates
at 2630 ml min~!. These flow rates produced a mean maximum
chamber dew point of 14.3°C (range 3.6—18.0°C). The maximum
absolute humidity was 14.36 g m™3 at T,=38.4°C.

We subsampled incurrent air from the baseline channel and
excurrent air from the metabolic chamber by manually switching
between them using the Field Metabolic System, which pulled air and
first measured WVP. Within the same system, the airstream was then
scrubbed of water vapor and CO, for the measurement of O,
consumption. All tubing connecting the system was Bev-A-Line
(Thermoplastic Processes Inc., Warren, NJ, USA). We digitized
voltage outputs from all the analysers using a Sable Systems Universal
Interface (model UI-2) and logged analyser outputs at a sampling rate
of 55 (0.2 Hz) with Expedata software (v.1.9.14, Sable Systems).

Experimental protocol

We placed murres in the chamber at approximately 21:00 h, within
5 min of capture, at a temperature within their thermoneutral zone
(meants.e.m.: 18.6+0.1°C; range: 15.7 to 20.4°C; Gabrielsen et al.,
1988; Elliott et al., 2013a) and held overnight for 14.65+1.4 h. All
heat tolerance measurements took place immediately the following
day between 06:00 h and 18:00 h (note however that previous
studies have found no diurnal rhythm in the RMR of murres;
Elliott et al., 2013a: from 04:30 h to 20:30 h on Coats Island;
Gabrielsen et al., 1988: from 09:00 h to 03:00 h at NyAlesund,
Svalbard). Starting in the thermoneutral zone at 7,~18.8°C, we
exposed individual murres to a ramped profile of increasing 7, by
approximately 2°C increments. Once the chamber 7, stabilized at
+1°C for approximately 2 min, we recorded data (¥, WVP, Ty,) for
approximately 30 min before increasing 7,. A 10-25 min baseline
was recorded at the beginning and end of each run, and in between
measurements while adjusting the chamber temperature. To observe
whether birds remained calm while in the chamber, we monitored
their behaviour using a SmotecQ dome infrared camera (model DF-
3500-AHD 1080P) and video capture software (ArcSoft ShowBiz,
v.3.5.15.68). Following the protocol of Whitfield et al. (2015), we
ceased experiments if birds exhibited continuous erratic behaviour
such as pacing, flapping or escape behaviour, or an uncontrolled
increase in T, to 45°C. As the maximum 7}, of murres was 43.3°C,
we monitored continuous escape behaviour, which typically lasted
for more than 2 min at the maximum 7}, measured. After the run was
terminated, birds were re-weighed and brought immediately outside
to cool down. Once their behaviour and breathing appeared normal,
murres were brought back to their nesting site and released into the
wild. No adverse effects were observed and all birds were witnessed
to have returned to their nesting site.
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Data analysis

To examine the physiological responses to increasing 7,, we
analysed 7o, and WVP data with Expedata 1.9.14. We first
corrected for the time lag in the O, and water vapour traces by using
the lag correction function in Expedata. Next, we used a z-
transformation (Bartholomew et al., 1981) to correct for chamber
volume relative to the flow rate. We used a Catmull-Rom spline
correction applied to baselines to correct for drift in the O, and water
vapour traces. Oxygen consumption was calculated using eqn 10.1
of Lighton (2019):

VOz =FR x (FIOZ _FE02)/(1 _FE02)7 (1)
where FR is the incurrent flow rate (ml min~'), Fig, is the incurrent
fractional O, concentration (0.2095) and FEq, is the excurrent
fractional O, concentration. At each 7,, we measured resting values
of o,, WVP and T, using the mean of the most stable 5 min period
of Vo,. For each T,, we excluded data from any bird that did not
remain calm based on our observations of their behaviour, which we
later verified using our video recordings of the experiments. Birds
were assumed to be post-absorptive as murres digest food within 1—
2 h (Gaston and Noble, 1985) and had fasted in the chamber for
14.65+1.4 h prior to starting our heat tolerance runs. Therefore, to
transform 7, to RMR (W), we used eqn 9.13 of Lighton (2019) to
derive energy equivalents (J ml~! O,), assuming a respiratory
quotient of 0.71 (Walsberg and Wolf, 1995). We calculated rates
of EWL (mg min~!) by converting WVP (kPa) into water vapor
density (mg ml~!) using the following equation from the Sable
Systems water vapor analyser manual, then multiplying by the
incurrent flow rate:

Water vapour density = (WVP x 1000)/(7, 4 273) x 461.5,
)
where 461.5 (J kg K7!) is the individual gas constant for water
vapor. To determine how efficient an individual murre was at
dissipating heat, we calculated their evaporative cooling efficiency
by converting rates of EWL into EHL (W) assuming 2.406 J mg™"
H,O0, and dividing by MHP, with low EHL/MHP values assumed to
indicate a lower ability to dissipate heat (Lasiewski et al., 1966).
We characterized the onset of heat stress as the 7, inflection
point for 7,, RMR, EWL and EHL/MHP in murres, obtained by
fitting broken-stick regressions to identify significant changes
in slope, using the R package SiZer (https:/cran.r-project.org/
package=SiZer). To examine the effect of body mass (M,,, measured
before heat tolerance runs) and 7, on 7,, RMR, EWL and EHL:
MHP, we took a subset of the data at the inflection points and
fitted linear mixed effect models on the data below and above
the inflection points using the lme4 package in R (Bates et al.,
2015). We built a global model with M, T, and their two-way
interaction as predictors. To account for repeated measurements
on the same individual, we included individual bird identification as
a random factor. We then performed model selection using the
dredge function in the MuMIn package (https:/CRAN.R-project.
org/package=MuMIn) based on Akaike’s information criterion
adjusted for small sample size (AICc). The minimum adequate
model within a AAICc<2 was considered the best model (Burnham
and Anderson, 2002). We calculated AICc weights based on all
available models. We used paired #-tests to compare the M,, of birds
before and after our heat tolerance runs.
Each of the top models met assumptions for normality, linearity
and homogeneity of variance. We tested for outliers by calculating
Cook’s distance values for each bird using the influence. ME

package (Nieuwenhuis et al., 2012). As the model for EWL above
the inflection point for 7, had one individual with a Cook’s distance
value >1 (Logan, 2010), we fitted a robust-mixed effect model to the
data for this particular model using the robustlmm package (Koller,
2016). All analyses were run using R 3.6.3 (http:/www.R-project.
org/) and significance was judged at 0=0.05. We made all figures
using ggplot2 (Wickham, 2016). Data are reported as means
+1 s.e.m. All raw data are tabulated in Table S1.

RESULTS

My

Murres weighed 999.3+20.2 g at capture (M, range 906—1079 g,
n=10). M, decreased (paired t-test, to=—12.30, P<0.0001) after
overnight fasting in the thermoneutral zone (mean 14.65 h) prior to
heat tolerance runs. Mean M, prior to heat tolerance trials was 943.2
+18.8 g and declined significantly during runs (post-heat tolerance
Mp=900.7+18.0 g; paired -test, t,=—21.91, P<0.0001), with a mean
loss of 42.5£1.9 g (i.e. approximately 4.5% loss). When we
compared the maximum 7, tolerated by murres with M,, prior to
heat tolerance trials, larger birds had lower heat tolerance limits,
with maximum tolerated 7, decreasing with increasing M,, (Fig. 1;
r*=0.63, F; 5=16.5, P=0.0036).

Ty

During heat tolerance trials, 7}, of murres ranged from 35.6°C at
T,=19.0°C to 43.3°C at T7,=37.9°C. Murres demonstrated a
significant inflection point in 7y, at 7,=33.7°C (Fig. 2; 95%
confidence interval CI=22.2-37.0°C). Below the inflection point,
the minimum adequate model explaining 73, included 7,, M}, and
their interaction (Table 1). Above the inflection point, the minimum
adequate model included 7, only, with 7, increasing with T,
(Table 2; Fig. 2). T, increased from 38.6+0.5°C at 7,=18.8+0.4°C to
a mean maximum of 41.4+0.5°C at 7,=36.5+0.5°C.

RMR

RMR ranged from 2.6 W at 7,=16.4°C to 9.4 W at T,=36.3°C.
A significant inflection point in RMR occurred at 7,=29.9°C
(Fig. 3A; 95% CI=18.8-34.1°C). Below the inflection point, the
minimum adequate model explaining RMR included 7, and M,
(Table 1), and RMR increased with both 7, (Table 2; 0.07+£0.02 W °
C~" and M, (0.01£0.003 W g~!). Above the inflection point, the
minimum adequate model included 7,, M, and the interaction
between T, and M,. To control for the interaction, we divided
individual birds into two M,, categories based on Fig. 1 (above
and below 900 g), and found RMR increased with T, at a faster rate
(Fig. 3B; 0.35£0.06 W °C~!, 95% CI=0.24-0.47) in murres that
were larger than 900 g, relative to smaller birds (0.22+0.04 W °C~!,
95% CI=0.15-0.29). Across all birds, RMR increased from
3.97+0.3 W at 7,=18.8+0.4°C to a mean maximum of 6.24+0.4 W
at 7,=36.4+0.4°C.

EWL

EWL rates ranged from 0.92 gh~! at 7,=21.2°C to 2.27 gh™! at
T,=38.4°C. Murres began panting at 7,=25.9+0.5°C and 7,=39.3
+0.5°C. We detected a significant inflection point in rates of EWL at
21.2°C (Fig. 4A; 95% CI=20.9-36.6°C). However, one bird
displayed noticeably lower rates of EWL relative to the others and
the removal of this bird increased the EWL inflection point to
T,=24.5°C (95% CI=17.7-36.8), a value closely aligning with the
mean 7T, when panting started. Below the first inflection point, EWL
rates were best predicted by M, (Table 1). Above the inflection
point, the minimum adequate model explaining rates of EWL
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included 7,, My, and the interaction between 7, and M, (Table 2;
Fig. 4B). To control for the interaction, we divided individual birds
into two M, categories based on Fig. 1 (above and below 900 g).
EWL increased with 7, at a faster rate (Fig. 4B; 0.04+0.005 gh °
C~!, 95% CI=0.03-0.05) in murres that were smaller than 900 g
relative to larger birds (0.02+0.002 g h °C~!, 95% CI1=0.01-0.02).
Murres increased their rate of EWL 1.26-fold relative to baseline
rates measured at 7,=18.8+0.4°C, increasing from a mean of 1.44
£0.1 gh™ ' to 1.80+0.1 gh~! at T,=36.440.4°C.

Evaporative cooling efficiency (EHL/MHP)

Evaporative cooling efficiency (EHL/MHP) ranged from 0.33 at
T,=31.6°C to 0.13 at 7,=36.3°C (meants.e.m.=0.23+£0.01). A
significant inflection point was detected at 7,=31.0°C (Fig. 5A;
95% CI=18.6-35.2°C). Below the inflection point, EHL/MHP was
best predicted by M, (Table 1). Above the inflection point, the
minimum adequate model explaining EHL/MHP included 7, and M,

Fig. 1. Linear regression of the relationship
between maximum tolerated air temperature
(T,) and total body mass (My) prior to heat
tolerance runs. Data are for 10 murres. The
shaded area represents the 95% confidence
interval (Cl) around the predicted values.

(Fig. 5B). EHL/MHP decreased significantly with both 7, (Table 2;
—0.010.001 g h°C~!, 95% CI=—0.013 to —0.008) and My, (Table 2;
—0.0007+0.0002 g h g~!, 95% CI=-0.001 to —0.0003).

DISCUSSION

Murres displayed markedly reduced heat tolerance relative to birds
originating from hot and arid climates, with individuals showing
signs of active physiological responses to evaporate heat at much
milder temperatures. Murres, to our knowledge, also have the lowest
maximum evaporative cooling efficiency ever recorded in birds,
including Cape rockjumpers (Chaetops frenatus, ~0.75; Oswald
et al., 2018) and the juniper titmouse (Baeolophus ridgwayi, ~0.75;
Weathers and Greene, 1998). Below, we outline how murre
physiological responses to increasing 7, demonstrate their limited
capacity to tolerate even moderately elevated temperatures, making
them vulnerable to Arctic warming when incubating on sun-
exposed cliffs.
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Fig. 2. Linear regression of the relationship
between body temperature (Ty,) and T,. T,
data are for 10 murres (n=78). A significant
inflection point in Ty, was identified at T,=33.7°C.
The shaded area represents the 95% ClI around
the predicted values.
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Table 1. The top linear mixed-effect models explaining body temperature (T,,), resting metabolic rate (RMR), evaporative water loss (EWL), and the
ratio of evaporative heat loss to metabolic heat production (i.e. evaporative cooling efficiency; EHL/MHP) after model selection with an Akaike’s

information criterion adjusted for small sample size (AICc) of less than 2

Variable T. (°C) Model K AlCc AAICC ®; L
Ty <33.7 Mo+ T +MpXT, 6 100.3 0 0.82 —43.31
>33.7 T, 4 72,9 0.00 0.79 -31.29
RMR <29.9 T,+M, 5 73.8 0.00 0.73 -31.07
>29.9 Mo+ T+ M T, 6 85.8 0.00 0.79 —35.72
EWL <21.2 M, 4 -16.4 0.00 0.46 15.03
Mp+T, 5 -15.6 0.80 0.31 17.78
>21.2 My+ T, +MyxT, 6 -103.4 0.00 1.00 58.35
EHL/MHP <31.0 M, 4 —-172.2 0.00 0.47 90.60
Mp+T, 5 -170.4 1.79 0.19 90.97
Int 3 -170.4 1.84 0.19 88.48
>31.0 My+T, 5 -186.4 0.00 0.78 99.11

The global model was body mass (M,)+air temperature (T,) and M,*T,. The identification of individual birds was included as a random effect in all models. K,
number of parameters; A/AICc, the difference between AlCc for the current model and the minimum of AICc among all the models; L, log likelihood; w;, Akaike’s
weights based on all models. The best models are in bold. If more than one model had AAICc<2, the most parsimonious model was considered best.

Ty

When T, exceeds T,, facultative hyperthermia (Gerson et al., 2019;
Tieleman and Williams, 1999) aids birds in conserving water by
increasing the thermal gradient between 7}, and 7, (Weathers, 1981,
Tieleman and Williams, 1999; Gerson et al., 2019). Murres
displayed hyperthermia and increased their T, at 7,=33.7°C (95%
CI=22.2-37.0°C). The inflection point at 7,=33.7°C is similar to
that in snow buntings (Plectrophenax nivalis, 32.6°C, 95%
CI=31.0-34.4°C; O’Connor et al., 2021), the only other Arctic
bird for which heat tolerance measurements are available, and is also
within the 7, range of desert and non-desert avian species (Tieleman
and Williams, 1999). Murres’ maximum 73, (43.3°C) was similar to
the mean Ty, of birds from non-desert (43.3°C, range 41.1-45.8°C)
and desert (43.6°C, range 41.5-45.4°C) environments at 7,=45.0°C

(Tieleman and Williams, 1999). While the mean increase in T;
across 23 desert and non-desert avian species from their lower
critical temperatures to 45.0°C was similar to that of murres (3.3
versus 2.8°C), the maximum 7, endured by any murre was much
lower (38.7 versus 45.0°C; Tieleman and Williams, 1999). The
regulation of a low T, will result in a narrowing thermal gradient as
T, increases, impeding murres’ capacity for dry heat loss and forcing
them to increasingly rely on evaporative cooling.

RMR

Murres increased their RMR at an upper critical temperature
(Tye) of 29.9°C (95% CI=18.8-34.1°C), which is similar to the
T, of other cold-region birds, including snow buntings (29.8°C,
95% CI=27.9-42.2°C; O’Connor et al., 2021), little penguins

Table 2. Parameter estimates (tstandard error) from the top linear mixed-effect models based on AlCc explaining T,, RMR, EWL and evaporative

cooling efficiency (EHL/MHP)

Variable T, inflection (°C) Predictors B s.e. t 95% CI
To <33.7 Intercept 20.03 8.02 2.50 4.82,35.24
Ta 0.57 0.16 3.54 0.26, 0.88
M, 1.77x1072 8.48x1072 2.09 1.65%x1073, 3.38x1072
TaxM, —4.94x10~* 1.70x10~4 -2.91 —8.27x107%, —1.62x10~*
>33.7 Intercept 19.71 449 4.39 10.78, 28.93
Ta 5.93x10~" 1.25%x10~" 4.73 0.34,0.84
RMR <29.9 Intercept -6.82 3.30 -2.07 -13.19, —4.36x10~"
T, 6.72x1072 1.53x1072 4.38 3.66x1072,9.75x1072
My 1.02x10~2 3.47x1073 2.94 3.47x1073%, 1.69x1072
>29.9 Intercept 24.19 17.98 1.35 -10.82, 59.13
Ta —9.25x10~" 5.09x10~" -1.82 —1.92,7.27x1072
M, -3.13x1072 1.95%x1072 -1.60 —6.92x1072, 6.73x1073
TaxM, 1.32x1073 5.55x10~* 2.37 2.30x1074, 2.40x10°3
EWL <21.2 Intercept 8.76x1072 4.53x10~" 1.94x10~" —7.82x107", 9.66x10~"
My 1.50x103 4.80x10~4 3.13 5.71x1074, 2.42x1073
>21.2 Intercept -2.40 1.49 -1.62 —-5.31,5.12x10~"
Ta 1.40x10~" 2.87x1072 4.88 8.40x1072, 1.97x10~"
My 3.63x10°2 1.58x1073 2.3 5.36x1074, 6.72x10°3
TaxMy, -1.26x10~4 3.08x10°5 -4.09 —1.86x1074, —6.56x10~°
EHL/MHP <31.0 Intercept 6.44x10~" 1.96x10~" 3.29 2.65x107", 1.02
My —4.26x107* 2.07x1074 -2.06 —8.28x1074, —2.54x10°°
>31.0 Intercept 1.19 1.61x10~" 7.44 8.86x10~",1.50
Ta —1.02x1072 1.32x1073 -7.78 —1.30%x1072, —=7.69x10~3
M, —6.59x10~4 1.59x10~4 -4.16 —9.65x1074, =3.52x10~4

The identification of individual birds was included as a random effect in all models. Models were fitted above and below their calculated T, inflection points. t-

values and 95% confidence intervals (Cl) are included.
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Fig. 3. Linear regression of the relationship between resting metabolic rate (RMR) and T,. RMR data are for 10 murres. (A) A significant inflection point in
RMR was identified at 7,=29.9°C (n=85). (B) Data for birds with M, greater (n=27) or lower (n=15) than 900 g at T,>29.9°C. The shaded area represents the 95%

Cl around the predicted values.

(Eudyptula minor, 30.0°C; Stahel and Nicol, 1982), Peruvian
penguins (Spheniscus humboldti, 30.0°C; Drent and Stonehouse,
1971) and Cassin’s auklet (Ptychoramphus aleuticus, ~25.0°C;
Richman and Lovvorn, 2011) and lower than those of arid and
semi-arid birds (33.9-46.5°C; McKechnie et al., 2017; Smith et al.,
2015; Smith et al., 2017). RMR increased by 1.57-fold from a
mean 7,=18.8°C to 36.4°C in murres, which is higher than the
mean fractional increase in snow buntings (1.4; O’Connor et al.,
2021) and some desert birds (1.26-2.66; McKechnie et al., 2016,

2017, Smith et al., 2017, McWhorter et al., 2018, Talbot et al.,
2018, Czenze et al., 2020). When we compared mass-specific
RMRs in murres above their 7., the slope was approximately
twice as steep as that predicted from their mean M, (0.298 versus
0.146 mW g °C~!; Weathers, 1981). In addition, post-absorptive
RMRs of murres (Table 3) are approximately 1.1-2.3 times higher
than predicted by allometric equations for non-passerines and
seabirds (Aschoff and Pohl, 1970; Croll and McLaren, 1993; Ellis,
1984; Gabrielsen and Ellis, 2002; Lasiewski and Dawson, 1967).

A ° B

Total EWL (g h-1)

Fig. 4. Linear regression of the

o ® relationship between evaporative
=8= <900 g water loss (EWL) rate and T,. EWL
o data are for 10 murres. (A) A significant
== >900 g

inflection point in EWL was identified at
T.=21.2°C (n=85). (B) Data for birds
with M, greater (n=49) or lower (n=24)
than 900 g at 7,>21.2°C. The shaded
area represents the 95% Cl around the
predicted values.
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Fig. 5. Linear regression of the relationship between evaporative cooling efficiency and T,. Evaporative cooling efficiency data (the ratio of evaporative heat
loss to metabolic heat production, EHL/MHP) are for 10 murres. (A) A significant inflection point in EHL/MHP was identified at T,=31.0°C (n=85). (B) EHL/MHP
versus M, at T,>31.0°C. The shaded area represents the 95% CI around the predicted values.

Murres’ high RMRs at thermoneutral temperatures are proposed
to be an adaptive response to higher energy requirements in
cold climates, diving foraging strategies and high activity levels
(Croll and McLaren, 1993; Ellis, 1984; Gabrielsen and Ellis, 2002;
Gabrielsen et al., 1988). However, high RMRs will likely become
disadvantageous at higher air temperatures because they will lead to
murres experiencing greater total heat loads, which must ultimately
be dissipated.

EWL

Murres began to show signs of heat stress, such as panting and
increased rates of EWL, at relatively low air temperatures. In
comparison, the onset of panting and increased EWL rate occurred
at higher air temperatures in snow buntings (33.2°C and 34.6°C,
95% CI=31.1-36.2°C, respectively; O’Connor et al., 2021)
and arid-zone birds (panting: 38.0-42.3°C, increase in EWL:
36-46.5°C; Smith et al., 2015, 2017, McKechnie et al., 2017,
O’Connor et al., 2017, Czenze et al., 2020). It is worth noting that a
T, of 21.2°C is ecologically relevant, and corresponds to the
maximum 7, at Coats Island during years in which murres displayed
noticeable heat dissipation behaviours and experienced higher rates
of mortality and egg loss due to the combination of heat stress

and mosquito parasitism (22°C in 1998: Gaston et al., 2002; 21.2
and 21.3°C in 2011: Gaston and Elliott, 2013).

The maximum 7, tolerated was correlated with higher evaporative
scope (maximum EWL/minimum EWL) in birds (Czenze et al.,
2020). The evaporative scope of murres was low relative to that of
snow buntings (O’Connor et al., 2021) and birds from desert
environments (range 4.73—15.33; McKechnie et al., 2017, Smith
etal., 2017, McWhorteret al., 2018, Czenze et al., 2020). The murres’
low evaporative scope presumably corresponded with their low mean
maximum 7, (36.4°C) relative to that of other birds (snow buntings:
43.0°C: O’Connor et al., 2021; desert birds: 46.0-54°C: McKechnie
etal., 2017; Smith et al., 2017; McWhorter et al., 2018; Czenze et al.,
2020). At 25°C, the mean EWL in murres was 1.54 gh™! or
approximately 37.0 ml day~!, higher than the allometric prediction
(31.2 ml day™!; see eqn 2 of Williams, 1996). Similarly, the EWL rate
of murres at 25°C was higher than that (25.8 ml day~') of Houbara
bustards (Chlamydotis macqueenii), a similar-sized (1245 g) desert
bird (Tieleman et al., 2002). Furthermore, based on equations from
McKechnie and Wolf (2010), the predicted EWL inflection point was
higher (33.6°C; but within the 95% CI=20.9-36.6°C), and the
predicted mass-specific slope in the rates of EWL with 7, was 16.6-
fold steeper than observed in murres (0.479 versus 0.029 mg

Table 3. RMR of murres across different Arctic breeding colonies and T, ranges, M,, latitude and sample size (N)

RMR (W) T, (°C) M, (9) Latitude N T, (°C) Colony Reference

4.39+0.1 16.4t029.9 943.2+18.8 62 10 N/A Coats Island, NU, Canada Our study

7 N/A 1094 57 11 N/A N/A Gabrielsen and Ellis, 2002
5.07 -18t0 20 819.3£72.7(s.d.) 79 11 39.6+0.7 (s.d.) Ny-Ale-sund, Svalbard Gabrielsen et al., 1988
6.51+0.8 15.1t018.2 980%78 (s.d.) 62 53 N/A Coats Island, NU, Canada Elliott et al., 2013b

6.8 —60 to 30 989.2+9.6 65 5 NA Bunnel Cape, St Lawrence Island, AK, USA Johnson and West, 1975
6.9 20 803+50.0 62 6 N/A Coats Island, NU, Canada, but reared in captivity ~ Croll and McLaren, 1993
7.0 7.0+0.9 820430 79 5 399 Krykkjefiellet Kongsfjorden, Norway Hawkins et al., 1997

T, and colony are provided where available. All values are reported as meansts.e.m. except where indicated.
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H,O gh°C™"). The minimal increase in EWL rate of murres suggests
they are restricted in their capacity to increase evaporative heat
dissipation with increasing temperatures.

Evaporative cooling efficiency (EHL/MHP)

To our knowledge, murres displayed the lowest maximum
evaporative cooling efficiency ever reported in a bird. However,
we acknowledge that our dew points, and resulting absolute
humidity levels, exceed those of previous heat tolerance
investigations (e.g. dew points <5°C; Smith et al., 2017).
Consequently, the maximum evaporative cooling capacity of
thick-billed murres may have been negatively impacted given the
interactive effects of humidity and 7, on EHL/MHP (Lasiewski
et al., 1966). Unfortunately, available data on the interaction
between humidity and 7, in birds at high T, is scarce and suggests
substantial variation among taxa (e.g. Gerson et al., 2014; van Dyk
et al., 2019), and we therefore at present cannot definitively say
whether our dew points markedly influenced murres’ cooling
efficiency. At best, murres could only dissipate one-third of the
heat they produced metabolically. Ratios of EHL/MHP<1
indicate an organism is unable to dissipate all of its metabolic
heat through evaporative heat loss (Lasiewski et al., 1966). While
snow buntings also showed low evaporative cooling efficiencies,
the inflection point for 7, in murres was lower than in buntings
(31°C, 95% CI=18.6-35.2°C versus 36.7°C, 95% CI1=31.0-42.3°C;
O’Connor et al., 2021). More importantly, evaporative cooling
efficiency decreased with increasing 7, in murres, suggesting
they were producing heat at a faster rate than they were dissipating
it. Murres depend on metabolic heat production to maintain
their core 7, (Johnson and West, 1975) and increase their
metabolic rate with decreasing water temperatures (Croll and
McLaren, 1993). High RMRs and low increases in EWL likely
resulted in very low EHL/MHP values and heat tolerance capacities
in murres.

M,, and heat tolerance

Larger murres were more vulnerable to heat stress as a result
of higher RMRs and lower rates of EWL. Foraging strategies
of murres vary with body size, with larger murres spending the
most time at deeper and colder depths (Orben et al., 2015). While
a larger body size may convey an advantage for minimizing heat
loss in murres when diving in cold water, it may also result in
an increased risk of overheating while sitting on their nesting
ledges, as evaporative cooling efficiency and heat tolerance limits
both declined with increasing M,. To our knowledge, this is the
first heat tolerance study on a diving seabird, or any large polar bird,
and the adaptations for diving in icy waters may conflict with
murres’ ability to tolerate heat. In contrast, heat tolerance limits
increased with M, in Australian passerines (McKechnie et al.,
2017), but there was no clear relationship in Sonoran passerines
(Smith et al., 2017). Body mass was the most important predictor of
EWL across 174 bird species, with higher EWL rates in larger birds
(Song and Beissinger, 2020); however, smaller passerines
experience higher rates of mass-specific EWL rates and have a
greater risk of dehydration than larger birds (Albright et al., 2017,
McKechnie and Wolf, 2010). Larger murres demonstrated steeper
increases in RMR and shallower increases in EWL, which clearly
influenced EHL/MHP. In contrast, maximum EHL/MHP increased
with increasing M, in Australian passerines (McKechnie et al.,
2017); however, other studies have not found a clear relationship
between M, and EHL/MHP (Smith et al., 2017; Whitfield et al.,
2015).

Conclusions and ecological implications

Recent heat waves in the Gulf of Alaska were associated with the
mass mortality and reproductive failures of several colonies of
common murres (Uria aalge) (Piatt et al., 2020). While these
mortalities were hypothesized to be due to an ‘ectothermic vice’
on forage fish where birds faced increased foraging competition
and reduced prey quality and quantity (Piatt et al., 2020), direct
effects of heat stress may have also contributed. We demonstrated
that thick-billed murres have limited heat tolerance. As a dark-
plumage bird with 12-24 h incubation shifts, low heat tolerance
may explain their heat dissipating behaviours, reproductive failures
and mortalities at a maximum 7, as low as 16-22°C (Gaston
and Elliott, 2013; Gaston et al., 2002). Importantly, when
incubating in full sun, murre surface temperatures can reach 46°C
(Gaston et al., 2002); therefore, the operative temperatures of the
birds are likely much higher than the maximum 7, measured at
Coats Island. In addition, the maximum EWL rate (2.27 gh™!)
recorded here would only result in a loss of 2.9% of the mean M,
(943 g) of murres over the period of an incubation shift (12 h, most
of which may not be in direct sunlight because of cloud cover
and nest orientation on the cliff), and is likely unable to cause
dehydration. Thus, we argue that murre mortality is likely due to
tissue stress associated with high body temperatures coupled with
blood loss from mosquito parasitism (Gaston and Elliott, 2013;
Gaston et al., 2002).

While we used multiple measures, we acknowledge that our low
sample size of individual murres (n=10) due to logistical constraints
makes it difficult for us to draw solid conclusions. Our confidence
intervals surrounding our inflection point temperatures were large
(approximately 15°C), which may be the result of our small sample
size and large range of M, (857—1027 g) among individuals. While
we measured the effects of warmer temperatures on resting murres,
further investigation should consider the impacts of heat stress
during high energy behaviours, as endotherms are limited in the
maximal energy they can expend by their ability to dissipate heat
(Speakman and Krol, 2010). For example, common eiders
(Somateria mollissima) experience hyperthermia during flight and
must stop to cool down, which is a major cost of migration
(Guillemette et al., 2016, 2017). As murres are large seabirds with
high energetic costs of flight (Elliott et al., 2013b) and high daily
energy requirements (Elliott and Gaston, 2014), their low
heat tolerance may lead to energetic trade-offs to support their
high costs of thermoregulation, which may impact their behaviour,
reproductive success and, ultimately, survival.
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